Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system.

نویسندگان

  • Steven D Wiederman
  • Patrick A Shoemaker
  • David C O'Carroll
چکیده

In both vertebrates and invertebrates, evidence supports separation of luminance increments and decrements (ON and OFF channels) in early stages of visual processing (Hartline, 1938; Joesch et al., 2010); however, less is known about how these parallel pathways are recombined to encode form and motion. In Drosophila, genetic knockdown of inputs to putative ON and OFF pathways and direct recording from downstream neurons in the wide-field motion pathway reveal that local elementary motion detectors exist in pairs that separately correlate contrast polarity channels, ON with ON and OFF with OFF (Joesch et al., 2013). However, behavioral responses to reverse-phi motion of discrete features reveal additional correlations of the opposite signs (Clark et al., 2011). We here present intracellular recordings from feature detecting neurons in the dragonfly that provide direct physiological evidence for the correlation of OFF and ON pathways. These neurons show clear polarity selectivity for feature contrast, responding strongly to targets that are darker than the background and only weakly to dark contrasting edges. These dark target responses are much stronger than the linear combination of responses to ON and OFF edges. We compare these data with output from elementary motion detector-based models (Eichner et al., 2011; Clark et al., 2011), with and without stages of strong center-surround antagonism. Our data support an alternative elementary small target motion detector model, which derives dark target selectivity from the correlation of a delayed OFF with an un-delayed ON signal at each individual visual processing unit (Wiederman et al., 2008, 2009).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collision Selective Visual Neural Network Inspired by LGMD2 Neurons in Juvenile Locusts

For autonomous robots in dynamic environments mixed with human, it is vital to detect impending collision quickly and robustly. The biological visual systems evolved over millions of years may provide us efficient solutions for collision detection in complex environments. In the cockpit of locusts, two Lobula Giant Movement Detectors, i.e. LGMD1 and LGMD2, have been identified which respond to ...

متن کامل

Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons.

Neurons in the superficial layers of the midbrain superior colliculus (SC) exhibit distinct tuning properties for visual stimuli, but, unlike neurons in the geniculocortical visual pathway, most respond best to visual stimuli that are smaller than the classical receptive field (RF). The mechanism underlying this size selectivity may depend on the number and pattern of feedforward retinal inputs...

متن کامل

Investigating the effects of glaucomatous (POAG) damage on the mVEP parameters

Introduction: Glaucoma is considered as a major cause of irreversible vision loss, worldwide. Glaucoma includes a diverse ophthalmopathies characterized by attenuating the neural and connective tissue segments and eventually progression of specific patterns of visual dysfunction. Currently, perimetry is known as the most accurate diagnostic method in glaucoma and its follow up...

متن کامل

An Effective Image Demosaicking Algorithm with Correlations among RGB Channels

In this paper, an effective image demosaicking algorithm, which is based on the correlation among the three primary colors, is proposed for mosaic image with Bayer color filter array (CFA). To reduce the distortion and improve the reconstruction quality, the proposed interpolation method makes full use of the brightness information and the edge information. We design several filters with size o...

متن کامل

Biologically Inspired Feature Detection Using Cascaded Correlations of off and on Channels

Flying insects are valuable animal models for elucidating computational processes underlying visual motion detection. For example, optical flow analysis by wide-field motion processing neurons in the insect visual system has been investigated from both behavioral and physiological perspectives [1]. This has resulted in useful computational models with diverse applications [2,3]. In addition, so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 32  شماره 

صفحات  -

تاریخ انتشار 2013